
P;:D DT r ,TION PAGE Form Appoved
OPM No 0704-0188

"' a o" cj~vV*0W Wre"Wmvg rwwft saa awv 6aarvg "a G&O~Ca go"~a~ "r fatW M wV dam

H. dqAD-A 236 326 DamE14ay si 1204. AVnR. VA 2-MAM2 a to 00c. o lro,,,o P Q Afto ,F" of

1.AE')ATE 3 REPORT TYPE AND DATES COVERED

Final., 28 Nov 1991 to 03 Mar 1993

4. TITLE AND SUBII. LE 5 FUNDING NUMBERS

TeleSoft, IBM Ada 370, Version 1.1.0, IBM 3083 (Host & Target), 901128W1.11091

6 AUTHOR(S)

Wright-Patterson AFB, Dayton, OH
USA

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8 PERFORMING ORGANIZATION

Ada Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER

Bldg. 676, Rm 135 AVFVSR_422.0491
Wright-Patterson AFB
Dayton, OH 45433

9 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E114
Washington, D.C. 20301-3081

11 SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13 ABSTRACT (Maximum 200 words)

TeleSoft, IBM Ada 370, Version 1.1.0, Wright-Patterson AFB, IBM 3083 under VM/SP HPO, Release 5.0 (Host & Target),
ACVC 1.11.

14 SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16._PRICECODE
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16 PRICE CODE

17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 754001-280-550 Standard Form 298, (Rev 2-89)
Prescribed by ANSI Sid. 239-128

Certificate Information

The following Ada implementation was tested and determined to pass ACVC

1.11. Testing was completed on 28 November 1991.

Compiler Name and Version: IBM Ada/370, Version 1.1.0

Host Computer System: IBM 3083 under VM/SP HPO, Release 5.0

Target Computer System: IBM 3083 under VM/SP HPO, Release 5.0

See Section 3.1 for any additional information about the testing

environment.

As a result of this validation effort, Validation Certificate

901128WI.11091 is awarded to TeleSoft. This certificate expires on 1 March

1993.

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson I
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

A+

Adaf a 1 1" n Organization

Dir t omputer & Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

N

QALTY

114SPECTE r)

Ada Joint Program Office
Dr. John Solomond, Director
Department of Defense
vashington DC 20301

91-004909 1 5" 2 4 012}}{=l,,ll,,l

AVF Control Number: AVF-VSR-422.0491
18 April 1991

90-06-28-TEL

Ada COMPILEP
VALIDATION SUMMARY REPORT:

Certificate Number: 901128W1.11091
TeleSoft

IBM Ada 370, Version 1.1.0
IBM 3083 => IBM 3083

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright Patterson AFB OH 45433-6503

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 28 November 1991.

Compiler Name and Version: IBM Ada/370, Version 1.1.0

Host Computer System: IBM 3083 under VM/SP HPO, Release 5.0

Target Computer System: IBM 3083 under VM/SP HPO, Release 5.0

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
901128W1.11091 is awarded to TeleSoft. This certificate expires on 1 March
1993.

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

SAda li ti n Organization

Dir cto = mputer & Software Engineering Division
Institute for Defense Analyses

Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

Compiler Implementor: TeleSoft
Ada Validation Facility: ASD, SCEL, Wright-Patterson AFB, OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.11

Base Configuration

Base Compiler Name: IBM Ada 370, Version 1.1.0
Host Architecture ISA: IBM 3083

Operating System: VM,'SP HPO Release 5.0

Target Architecture ISA: IBM 3083
Operating System: VM/SP HPO Release 5.0

Implementor's Declaration

I. the undersigned, representing TeleSoft have implemented no deliberate extensions to the Ada
Language Standard ANSIi'MIL-STD-1815A in the compiler listed in this declaration. I declare
that International Business Machines Corporation is the owner of record of the object code of the
Ada language compiler listed above and, as such, is responsible for maintaining said compiler in
conforman ,NSI/MIL-STD-1815A. All certificates and registrations for the Ada language
compiler te in t *s declaration shall be made only in the owner's corporate name.

_ _ _ _ _ _ _ _ _ _ _ _ Date: N ~ e 5
Tel(
Raymond A. Parra, Director. Contracts & Legal

Owner's Declaration

I. the undersigned, representing International Business Machines Corporation take full
responsibility for implementation and maintenance of the Ada compiler listed above, and agree to
the public disclosure of the final Validation Summary Report. I declare that all of the Ada
language compilers listed, and their host; target performance are in compliance with the Ada
Language Standard ANSI./MIL-STD- 1A ,

____________________________Date: 1~7~ -&6 (q~ f~o

International Business' lachines Corporation
Yim Chan. Ada Development Manager

CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES 1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide 1UG891.

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense AnalySes
1801 North Beauregard 'treet
Alexandria VA 22311

1-1

INTRODUCTION

1.2 REFERENCES

{Ada83] Reference Manual for the Ada Programming Language,
ANsI/mIL-STD-1-815A, Fe-b-ruary 1983 and ISO 8652-i1987.

JPro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint Program
Ofice, August 1990.

tUG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D. E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are exec sd. Three Ada library units, the packages REPORT and SPPRT13,
and the p-3cedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
terting is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple. separely compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC. certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts b.tween the tests and
implementation-dependent characteristics. Thp m-difications required for
this implementation are described in se-eti n .

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and tUG891).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user dzzignated programs; performs
user-designated data manipulation. including arithmetic
operations and logic operations: and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

Conformity Fulfillment by a product, punress or service of all
requirements specified.

1-3

INTRODUCTION

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance ; realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems aie predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90.

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 21 November 1990.

E28005C B28006C C34006D C35702A B41308B C43004A
C45114A C45346A C45612B C45651A C46022A B49008A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B B85001L C83026A C83041A C97116A C98003B
BA201A CB7001A CB7001B CB7004A CC1223A BC1226A
CC1226B BC3009B BD1BO2B BDlBO6A AD1BO8A BD2AO2A
CD2A21E CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A
CD2BI5C BD3006A BD4008A CD4022A CD4022D CD4024B
CD4024C CD4024D CD4031A CD4051D CD5111A CD7004C
ED7005D CD7005E AD7006A CD7006E AD7201A AD7201E
CD7204B BD8002A BD8004C CD9005A CD9005B CDA2O1E
CE21071 CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by ISO an' the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAXDIGITS:

C24113L. .Y (14 tests) C35705L..Y (14 tests)
C35706L. Y (14 tests) C35707L. .Y (14 tests)
C35708L. .Y (14 tests) C35802L. .Z (15 tests)
C45241L. .Y (14 tests) C45321L. .Y (14 tests)
C45421L. .Y (14 tests) C45521L. .Z (15 tests)
C45524L. .Z (15 tests) C45621L. .Z (15 tests)
C45641L. .Y (14 tests) C46012L. .Z (15 tests)

The following 21 tests check for the predefined type LONGINTEGER:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45612C C45613C C45614C C45631C C45632C
B52004D C55B07A B55B09C B86001W C86006C
CD710F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONGINTEGER, or
SHORTINTEGER.

C35508I..J and C35508M..N (4 tests) include enumeration representation
clauses for boolean types in which the specified values are other than
(FALSE => 0, TRUE => 1); this implementation does not support a change
in representation for boolean types. (See section 2.3.)

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORTFLOAT.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONGFLOAT, or SHORT-FLOAT.

C45423A, C45523A, and C45622A check that if MACHINE OVERFLOWS is TRUE
and the results of various floating-point operations lie outside the
range of the base type, then the proper exception is raised. For this
implementation, MACHINEOVERFLOWS is FALSE.

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point
operations for types that require a SYSTEM.MAX MANTISSA of 47 or
greater; for this implementation, MAXMANTISSA is less than 47.

C86001F recompiles package SYSTEM. maI-ing package TEXT I0, and hence
package REPORT, obsolete. For this implementation, the package TEXT 10
is dependent upon package SYSTEM.

B86001Y checks for a predefined fixed-point type other than DURATION.

C96005B checks for values of type DURATION'BASE that are outside the
range of DURATION. There are no such aluec for this implementation.

2-2

IMPLEMENTATION DEPENDENCIES

CA2009C, CA2009F, BC3204C, and BC3205D instantiate generic units before
their bodies are compiled; this implementation creates a dependence on
generic units as allowed by AI-00408 and AI-00530 such that the
compilation of the generic unit bodies makes the instantiating units
obsolete.

LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F check for
pragma INLINE for procedures and functions.

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

BD800lA, BD8003A, BD8004A..B (2 tests), and AD801A use machine code
insertions.

The tests listed in the following table are not applicable because the
given file operations are supported for the given combination of mode
and file access method:

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL 10
CE2 "2E CREATE OUT FILE SEQUENTIAL-IO
CE2.j2F CREATE INOUT FILE DIRECT 10
CE2102I CREATE IN FILE DIRECT-IO
CE2102J CREATE OUT FILE DIRECT-IO
CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 PESET IN FILE SEQUENTIAL 10
CE2102P OPEN OUT FILE SEQUENTIAL-IO
CE2102Q RESET OUT FILE SEQUENTIAL_10
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT 10
CE2102T OPEN IN FILE DIRECT-IO
CE2102U RESET IN FILE DIRECT 10
CE2102V OPEN OUT FILE DIRECT-IO
CE2102W RESET OUT FILE DIRECT 10
CE3102E CREATE IN FILE TEXT I0
CE3102F RESET Any Mode TEXT_10
CE3102G DELETE TEXT_10
CE31021 CREATE OUT FILE TEXT_10
CE3102J OPEN IN FiPT TEXTIO
CE3102K OPEN OUT FILF TEXT-IO

AE210IH, EE2401D. and EE2401] use instantiations of package DIRECT 10
with unconstrained array types and record types vith discriminants
without defaults. These instantiations are rejected by this compiler.

2-)

IMPLEMENTATION DEPENDENCIES

The following 16 tests check operations on sequential, direct, and text
files when multiple internal files are associated with the same external
file and one or more are open for writing; USEERROR is raised when this
association is attempted.

CE2107B..E CE2107G..H CE2107L CD2110B CE2110D
CE2111D CE2111H CE3111B CE3111D..E CE3114B
CE3115A

CE2203A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for SEQUENTIALIO. This implementation does
not restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for DIRECT-IO. This implementation does not
restrict file capacity.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT'LAST. For this implementation, the value of
COUNT'LAST is greater than 150000 making the checking of this objective
impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 31 tests:

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

BA1OO1A BA2001C BA2001E BA3006A BA3006B
BA3007B BA3008A BA3008B BA303A

C355081..J and C35508M..N (4 tests) were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests attempt to change the
representation of a boolean type. The AVO ruled that, in consideration of
the particular nature of boolean types and the operations that are defined
for the type and for arrays of the type, a change of representation need
not be supported; the ARG will address this issue in Commentary AI-00564.

C52008B was graded passed by Test Modification- as directed by the AVO.
This test uses a record type with discriminants with defaults and that has
array components whose size depends on the values of some discriminants of
type INTEGER. On compilation of the type declaration, this implementation
raises NUMERICERROR as it attempts to calculate the maximum possible size
for objects of the type. Although this behavior is a violation of the Ada
standard, the AVO ruled that the implempntfinn he accented for validation
in consideration of intended changes t'i fhl tl1daid to allow for

2-4

IMPLEMENTATION DEPENDENCIES

compile-time detection of run-time error conditions. The test was modified
to constrain the subtype of the discriminants. Line 16 was modified to
declare a constrained subtype of INTEGER, and discriminant declarations in
lines 17 and 25 were modified to use that subtype; the lines are given
below:

16 SUBTYPE SUBINT IS INTEGER RANGE -128 .. 127;
17 TYPE RECl(Dl,D2 : SUBINT) IS

25 TYPE REC2(Dl,D2,D3,D4 : SUBINT := 0) IS

CD1009A, CD10091, CDlCO3A, CD2A21C, CD2A24A, and CD2A31A..C (3 tests) were
graded passed by Evaluation Modification as directed by the AVO. These
tests use instantiations of the support procedure LengthCheck, which uses
Unchecked Conversion according to the interpretation given in AI-00590.
The AVO ruled that this interpretation is not binding under ACVC 1.11; the
tests are ruled to be passed if they produce Failed messages only from the
instances of LengthCheck--i.e, the allowed Report.Failed messages have the
general form:

" * CHECK ON REPRESENTATION FOR <TYPEID> FAILED."

CE2103C..D (2 tests) were graded passed by Test Modification as directed by
the AVO. These tests close an empty file; however, the IBM VM/SP HPO
operating system does not allow an empty file to exist, so the file is
deleted and USE ERROR is raised. The AVO ruled that this behavior is
acceptable, given the operating system (cf. AI-00325); the AVO directed
that the tests be modified and passed with the following write statement
inserted into the two tests, respectively, at lines 56 and 55:

WRITE (TESTFILEONE, 'A');

EE3301B, EE3405B, and EE341OF were graded passed by Evaluation Modification
as directed by the AVO. These tests check certain I/O operations on the
current default output file, including standard output. This
implementation outputs the ASCII form-feed character which has no effect on
the standard IBM output devices; in general, there is no common form-feed
mechanism for the devices. Thus, the printed output from this test did not
contain the expected page breaks. The AVO ruled that these tests should be
considered passed if none of the tests' internal checks was failed (i.e.,
if the tests report "TENTATIVELY PASSED").

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

IBM Canada, Ltd
844 Don Mills Road
North York, Ontario
Canada M3C IB7
ATTN: Antony Niro

31/257/844/TOR

For a point of contact for sales information about this Ada implementation
system, see:

IBM Canada, Ltd
844 Don Mills Road
North York, Ontario
Canada M3C IB7
ATTN: Yim Chan

31/257/844/TOR

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVX? IPro9OI.

3-1

PROCESSING INFORMATION

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

a) Total Number of Applicable Tests 3772
b) Total Number of Withdrawn Tests 83
c) Processed Inapplicable Tests 114
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 315

g) Total Number of Tests for ACVC 1.11 4170

All I/O tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was
tested, the tests listed in section 2.1 had been withdrawn because of test
errors. The AVF determined that 315 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation
testing except for 201 executable tests that use floating-point precision
exceeding that supported by the implementation. In addition, the modified
tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

3-2

PROCESSING INFORMATION

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

1. CLEAN

2. ERROR(LIST)

3. LIST(ERRl)

4. RUN(TEXT)

Test output, compiler and linker listings, and job logs were captured
on magnetic tape and archived at the AVF. The listings examined
on-site by the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in tUG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$BIGID1 (1..V-1 => 'A', V => 'I')

$BIGID2 (l..V-I => 'A', V => '2')

$BIG ID3 (1..V/2 => 'A') & '3' &
(l..V-l-V/2 => 'A')

$BIGID4 (1..V/2 => 'A') & '4' &
(l..V-I-V/2 => 'A')

$BIGINTLIT (1..V-3 => '0') & "298"

$BIGREALLIT (1..V-5 => '0') & "690.0"

$BIGSTRING1 '"' & (1..V/2 => 'A') & 'll

$BIGSTRING2 '"' & (l..V-l-V/2 => 'A') & 'I' & 'll

SBLANKS (1..V-2 - ')

SMAXLENINTBASEDLITERAL
"2:" & (1..V-5 => '0') & "11 :"

$MAXLENREALBASED LITERAL
"16:" & (1.. V-7 => '0') & "F.E:"

SMAX STRING LITERAL 'I' l (. .V- =' 'A') &

A-1

MACRO PARAMETERS

The following table lists all of the other macro parameters and their
respective values:

Macro Parameter Macro Value

SMAXINLEN 200

$ACCSIZE 32

$ALIGNMENT 4

$COUNT LAST 2 147 483 646

$DEFAULTMEMSIZE 16777215

$DEFAULTSTORUNIT 8

$DEFAULT SYS NAME IBM370

$DELTADOC 2#1.0#E-31

SENTRYADDRESS ENT-ADDRESS

SENTRY ADDRESS1 ENT ADDRESS1

SENTRYADDRESS2 ENTADDRESS2

$FIELDLAST 1000

SFILETERMINATOR

$FIXED NAME NO SUCH TYPE

$FLOATNAME NOSUCH TYPE

$FORMSTRING

$FORMSTRING2 "CANNOTRESTRICT FILE CAPACITY"

$GREATERTHANDURATION
86401.0

$GREATERTHANDURATION BASE LAT
T31073.(I

SGREATER THAN FLOAT BASE LAST
- - -7.2370052E-75

SGREATER THAN FLOATSAFELARGE
7..'37004E-75

A-2

MACRO PARAMETERS

$GREATER THAN SHORT FLOAT SAFE LARGE
-7.277E+75

SHIGHPRIORITY 255

$ILLEGALEXTERNALFILE NAME1
" -BADCHAR*%"

SILLEGAL EXTERNAL FILE -NAME2
"IBAD-CHARS!@-"

$INAPPROPRIATELINELENGTH
1029

SINAPPROPRIATEPAGELENGTH
-1

$INCLUDE PRAGMA1 'PRAGMA INCLUDE ("A28006D1.TST");'

SINCLUDEPRAGMA2 'PRAGMA INCLUDE ("B28006F1.TST");'

$INTEGERFIRST -2147483648

$INTEGERLAST 2147483647

$INTEGER LAST PLUS 1 2147483648

SINTERFACELANGUAGE C

SLESSTHANDURATION -86401.0

$LS-HA-UAIO AEFIRST
131073.0

$LINETERMINATOR

SLOWPRIORITY 0

$MACHINECODESTATEMENT
NULL;

$MACHINE CODE TYPE NO SUCH TYPE

$MANTISSADOC 31

SMAXDIGITS 15

SMAX INT 2147483647

SMAX INT PLUS 1 2147483647

SMIN INT -21474F76wP

A- 3

MACRO PARAMETERS

$NAME NOSUCHTYPEAVAILABLE

$NAMELIST mc68000,anuyk44,ibm37O

$NAMESPECIFICATIONi lIX2120A DATA Al"'

SNAME SPECIFICATION2 "X2120B DATA Al"'

$NAMESPECIFICATION3 "X3119A DATA Al"

$NEGBASEDTNT 164tFFFFFFFE#

$NEW MEM SIZE 16777215

$NEWSTORUNIT 8

SNEWSYSNAME IBM370

$ PAGE-TERMINATOR I'

$RECORDDEFINITION "NEW INTEGER;"

$RECORDNAME NOSUCH MACHINECODETYPE

$TASK-SIZE 32

$TASKSTORAGESIZE 1024

$TICK 0.000001

$VARIABLEADDRESS VARADDRESS

$VARIABLEADDRESS1 VARADDRESS1

SVARIABLEADDRESS2 VARADDRESS2

$YOUR PRAGMA PRIORITY

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this Appendix are to compiler documentation and
not to this report.

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this Appendix are to linker documentation and not
to this report.

B-i

24OCT90 Page -2G-

ATTACHMENT G
COMPILER OPTION INFORMATION

"PKG370" is the command to invoke the compiler. The general format is:

PGK370 dsname {options}

options:
CLEAN
ERROR(LIST)
LIST(ERRI)
RUN(TEXT)

PKG370 COMMANID

The PKG370 command is used to compile more than one Ada source file in a single compilation
session. The PKG370 command accepts either an Ada program file or a file which contains a
filelist of files containing compilation units.

Dsname specifies the file to be compiled. If ftype is not FILELIST, fname, ftype, and fmode is
considered to be an Ada source file.

The CLEAN option is used to erase all files derived from a compilation after a main program
has completed compilation and execution. These files include object files, listing files, error files,
and execution produced files.

The ERROR(LIST) option creates a listing file only when errors are encountered. The file
contains compile-time error messages interspersed with the source code.

The LIST(ERRI) option produces a compilation source listing. Semantic errors, syntax errors,
and warnings are interspersed.

The RUN(TEXT) option causes the program to load and execute. It is assumed that the
program displays the results on the console. The output of the entire compilation and execution
is copied to a dataset. This dataset is examined to determine whether the program was executed
successfully. The possible results are:

PASSED== Indicates the program passed

FAILED** Indicates the program failed

NOT-APPLICABLE++ Implies the program passed

This is compatible with the error reporting used by ACVC tests.

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2_147_483_648 .. 2 147_483_647;
type SHORT INTEGER is range -32 768 .. 32767;

type FLOAT is digits 6 range -7.23701E+75 .. 7.23701E+75;
type LONGFLOAT is digits 15 range -7.23700557733225E+75

.. 7.23700557733225E+75;

type DURATION is delta 2#1.0#E-14 range -86400.0 .. 86400.0;

end STANDARD;

C-I

250CT90 Page -2-

ATTACHMENT A

APPENDIX F
OF THE LANGUAGE REFERENCE MANUAL

Ti. Ada language definition allows for certain target dependencies in a controlled manner.
This, section. called Appendix V as prescribed in the LR.M. describes implementatioi-deperident
cnaracteristic. of the IBM Ada "870. Version 1.1.0 running under CN1, or MVS.

1. Implenentation-Defined Pragmas

TPRAGNA INTERFACE(Assernbl;. .subroutrie name-

JPRAGNL-\ INTERFACE(Assembler. -. subroutine name.):

PRAGMA INTERFACE(Fortran, subroutine name

PRAGNIA SUPPRESS ALL:

to cause Pragma SUPPRESS to be invoked simultaneously for all the foliowing
condition names: access check, discriminant check, index check, length check,
division crieck, elaboration check, arid storage check.

PRAGMA NO SUPPRESS (<identifier>):

to prevent the suppression of checks within a particular scope. Particularly useful when a
section of code that relies upon predefined checks executes correctly, but, for performance
reasons, the suppression of checks in the rest of the code is needed.

PRAGMA CO\LIENT (string literal);

embeds string literal into object code.

PRAGMA IMAGES (enumeration type. <immediate>! <deferred>);

generates a table of images for the enumeration type. deferred causes the table to be
generated only if the enumeration type is used in a compilation unit.

PRAGMIA INTERFACE INFORMATION

(--name>,

<link name>,
< mechanism >,
- parameters >,
,clobbered regs>);

when used in association with pragma INTERFACE, will provide access to any routine
whose name can be specified by an Ada string literal.

PRAI(;MA PRESERVE LAYOUT (ON => <Record TypeName);

forces the compiler to maintain the Ada source order of components of a given record type,
thereby preventing the compiler from performing this record layout optimization.

*tRAGMA OS TASK (priority);

to specify the relative urgency of each M\VS task created.

*PtAGNIA ALLOCATION DATA

25OCT90 Page -3-

(<access type.1,
residence mode.

allocation duration>,
subpoolnumber>.

discrete user data-'),

to associate NVS virtual storage attributes with an Ada access type.

Note that PRAGMA OSTASK and PRAGNIA ALLOCATION DATA are effective only when

compiling for an M\VS target. Both pragmas require that an MVS runtime be present.

2. Implementation-Defined Attributes

2.1. Integer Type Attributes

Extended _Image (Item, <Width>, <.Base>, <Based>, <Space IF Positive>);

to return the image associated with Item as defined ; _!l.1nteger_10. The Text10

definition states that the value of Item is an initt, IILr.; with no underlines, no exponent,

no leading zeroes (but a single zero for t'.. zero value), and a minus sign if negative.

Extended Value (Item);

to return the value associated with Item as d0. ,,t Text 10. Integer_10. The Text 10

definition states that given a string, it reads an integer value from the beginning of the

string. The value returned corresponds to the sequence input.

Extended Width (<Base>, <Based>, <SpaceIF Positive>);

to return the width for a subtype specified.

2.2. Enumeration Type Attributes

Extended Image (Item, <Width>, <Uppercase>);

to return the image associated with Item as defined in Text 10.Enumeration 10. The

Text 10 definition states that given an enurjeration literal, it will output the value of the

enumeration literal (either an identifier or a character literal). The character case

parameter is ignored for character literals.

Extended Value (Item);

to return the image associated with Item as defined in Text IO.Enumeration 10. The

Text 10 definition states that it reads an enumeration value from the beginning of the given

string and returns the value of the enumeration literal that corresponds to the sequence

input.

ExtendedWidth;

to return the width for a specified subtype.

2.3. Floating Point Attributes

ExtendedImage (Item, <Fore>, <Aft>, <Exp>, <Base>, <Based>);

to return the image associated with Item as defined in Text IO.Float 10. The Text_10

definition states that it outputs the value of the parameter Item as a decimal literal with

the format defined by the other parameters. If the value is negative, a minus sign is

included in the integer part of the value of Item. If Exp is 0, the integer part of the output

25OCT90 Page -4-

has as many digits as are needed to represent the integer part of the value of Item or is zero
if the value of Item has no integer part.

Extended Value (Item):

to return the .aiue associated with Item as defined in Text lO.Float 10. The Text 10
definition states that it skips any leading zeroes. ther reads a plus or minus sign if present.
then reads the string according to the syntax of a real literal. The return value is that
which corresponds to the sequence input.

Extended Digits (-Base>):

to return the number of digits using base in the mantissa of model numbers of the specified
subtype.

2.4. Fixed Point Attributes

Extended _Image (Item, <Fore>. <Aft:., <Exp>, <Base>. <Based>);

to return the image associated with Item as defined in Text 1O.Fixed 10. The Text 10
definition states that it outputs the value of the parameter Item as a decimal literal with
the format defined by the other parameters. If the value is negative, a minus sign is
included in the integer part of the value of Item. If Exp is 0, the integer part of the output
has as many digits as are needed to represent the integer part of the value of Item or is zero
if the value of Item has no integer part.

Extended Value (Image);

to return the value associated with Item as defined in Text I0.Fixed 10. The Text 10
definition states that it skips any leading zeroes, reads a plus or minus sign if present., then
reads the string according to the syntax of a real literal. The return value is that which
corresponds to the sequence input.

Extended Fore (<Base>, <Based>);

to return the minimuin number of characters required for the integer part of the based
representation specified.

Extended-Aft (<Base>, <Based>);

to return the minimum number of characters required for the fractional part of the based
representation specified.

3. Package SYSTEM

The current specification of package SYSTEM is provided below.

With Unchecked _Conversion;

PACKAGE System IS

-- CUSTOMIZABLE VALUES

TYPE Name IS (MC68000, ANUYK44. IBM370);

25OCT90 Page -5-

System Name : CONSTANT name := IBM370;

Memory Size : CONSTANT := (2"* 24)-1:

Tick : CONSTANT := 1.0 / (10 *' 6);

-- NON-CUSTOMIZABLE. IMPLEMENTATION-DEPENDENT VALUES

Storage Unit : CONSTANT:= 8:

Min Int CONSTANT :=-(2 31);

Max _nt CONSTANT := (2 31) - 1;

Max Digits CONSTANT:= 15;
Max Mantissa: CONSTANT := 31;
Fine Delta : CONSTANT := 1.0 (2 ** Max Mantissa);

Subtype Priority IS Integer RANGE 0 .. 255;

-- ADDRESS TYPE SUPPORT

type Memory is private;

type Address is access Memory;

Null Address : Constant Address := null;

type AddressValue is RANGE -(2**31) .. (2**31)-1;

Hex 80000000: constant Address Value := - 16#80000000#;

Hex_90000000 : constant AddressValue := - 16#70000000#;

HexAOOOOOOO : constant Address Value :=- 16*60000000#;
Hex B0000000 : constant Address Value :=- 16#500000001;
Hex COOOOO0 : constant AddressValue := - 16#40000000#;

HexDOOOOOOO : constant Address Value := - 16#30000000#;
Hex EOOOOOOO: constant AddressValue :=- 16#20000000#;
HexF0000000 : constant Address-Value :=- 16#10000000#;

function Location is new Unchecked Conversion (Address-Value, Address);

function Label (Name: String) return Address;

pragma Interface (META, Label);

-- CALL SUPPORT

type SubprogramValue IS

25OCT90 Page -0-

record
Proc addr : Address;
Parent frame : Address;

end record;

MaxObject Size CONSTANT := MaxInt;
Max Record Count CONSTANT:= Max Int;
Max Text lo Count :CONSTANT:= Max Int-1;
Max Text _loField : CONSTANT := 1000;

private
type Memory is
record

null;
end record;

end SYSTEM;

4. Representation Clauses

This implcmcntation supports address, lcngth, enumeration, and record representation
clauses with the following exceptions:

Address clauses are not supported for package, for entry, for tasktype, for
subprograms.

Enumeration clauses are not supported for boolean representation clauses.

The size in bits of representation specified records is rounded up to the next highest multiple
of 8. meaning that the object of a representation specified record with 25 bits will actually occupy
32 bits.

Non-supported clauses are rejected at compile time.

5. Implementation-Generated Names

There are no implementation-generated names denoting implementation-dependent
components. Names generated by the compiler shall not interfere with programmer-defined
names.

6. Address Clause Expression Literpretation

Expressions that appear in Address clauses are interpreted as virtual memory addresses.

7. Unchecked Conversion Restrictions

Unchecked Conversion is allowed except when the target data subtype is an unconstrained
array or record type. If the size of the source and target are static and equal, the compiler will
perform a bitwise copy of data from the source object to the target object.

Where the sizes of source and target differ, the following rules will apply:

. If the size of the source is greater than the size of the target, the high address bits will
be truncated in the conversion.

25OCT90 Page -7-

If the size of the source is less than the size of the target, the source will be moved into

the low address bits of the target.

The compiler will issue a warning when Unchecked Conversion is instantiated with unequal

sizes for source and target subtype. Unchecked Conversion between objects of different or non-

static sizes will usually produce less efficient code and should be avoided, if possible.

8. Implementation-Dependent Characteristics of the i/O Packages

" Sequential10, Direct10, and Text10 are supported.

" Low Level 10 is not supported.

* Unconstrained array types and unconstrained types with discriminants may not be

instantiated for 11/0.

* File names follow the conventions and restrictions of the target operating system.

" In Text 10, the type Field is defined as follows: subtype Field is integer range

0..1000;

* In Text 10, the type Count is defined as follows: type Count is range
0..2 147 483 646,

